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We demonstrate control over heat flow in an N-terminal molecular junction. Using simple model Hamilto-
nians we show that the heat current through two terminals can be tuned by the temperature and coupling
parameters of external gating reservoirs. We discuss two models: A fully harmonic system and a model
incorporating anharmonic interactions. For both models the control reservoirs induce thermal fluctuations of
the transition elements between molecular vibrational states. We find that a fully harmonic model does not
show any controllability, while for an anharmonic system the conduction properties of the junction strongly
depend on the parameters of the gates. Realizations of the model system within nanodevices and macromol-

ecules are discussed.
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Control over vibrational energy flow in nanoscale struc-
tures and single molecules is a long standing goal in many
parts of physical science and nanotechnology. Historically,
intramolecular vibrational redistribution (IVR) was a topic of
great interest in chemistry and physics. IVR processes must
be reckoned for understanding, and ultimately controlling,
molecular dynamics and chemical kinetics [1]. The effi-
ciency of these processes is the basic assumption behind the
well validated Rice-Ramsperger-Kassel-Marcus reaction rate
theory [2,3]. From a different perspective, the unexpected
results of the computer experiment of Fermi-Pasta-Ulam [4],
showing no equipartition of energy among normal modes in
harmonic chains including small nonlinear terms, lead to ex-
tensive research of IVR in nonlinear systems [5].

Recurrent theoretical interest in this field is due to the
impressive progress in probing thermal properties of nanos-
cale systems such as nanotubes [6—8], self-assembled mono-
layers [9-11], and thin films [12], and due to the develop-
ment of more tunable systems [13,14]. Recent progress in
molecular electronics and nanomechanics has raised further
interest in exploring mechanisms of energy flow in nanolevel
systems. In molecular electronics, local heating of nanoscale
devices might cause structural instabilities undermining the
junction integrity [15-17]. Engineering good thermal con-
tacts and cooling of the junction are necessary for a stable
operation mode. Minimization of mechanical devices, e.g.,
refrigerators [ 18] and pumps [19], to the molecular scale is a
topic of great interest for technologies such as chemical sens-
ing, power generation, and energy conversion [12,20-22]. In
this context, it is crucial to understand, and ultimately con-
trol, the dynamics of phonons in nanoscale structures or,
analogously, vibrational modes in molecular systems.

The heat conduction properties of molecular chains can be
tuned either by manipulating the internal molecular param-
eters, or by externally gating the system. We refer to the first
mode of control as “static,” or “internal,” while, as we ex-
plain below, we consider gating as a “dynamical,” or “exter-
nal,” control scheme.

Static control is realized by adjusting internal system pa-
rameters, e.g., atomic masses and interatomic potential en-
ergy, with the goal of an increase or decrease of the system
thermal conductivity [23]. This type of control problem has
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been extensively discussed in the context of Fourier trans-
port. Here the main challenge is to identify the necessary and
sufficient conditions for the validity of the Fourier law of
heat conductivity Jo<—VT in low dimensions and for quan-
tum systems [24-27]. By engineering the molecular system,
one can also build functional devices, for example, a thermal
rectifier, where the nanojunction allows heat flux in one di-
rection, while it acts similar to an insulator when the tem-
perature gradient is reversed [13,28-35], and logic gates
[36].

In this context we would like to emphasize that tuning the
thermal conductance of harmonic chains is also feasible,
though these systems demonstrate abnormal (non-Fourier)
thermal current. In the language of the thermal Landauer
formula [37], this can be accomplished by manipulating the
transmission coefficient for phononic heat flow through the
device, e.g., by introducing impurities into the structure [38].

In this paper we present a simple model that illustrates an
external control over thermal current in molecular systems.
The generic setup includes a molecule (subsystem) coupled
to N thermal baths of different temperatures. Heat current
flowing through the system may be modified by a control
reservoir, where, in general, more than one gate may couple
to the subsystem. Typical control parameters are the gate
temperature and its coupling to the molecular unit. A sche-
matic representation of a three-bath scenario is shown in Fig.
1. We refer to the energetically hot group as L, while the R
group is the energy accepting side group. We will show here
that the current in the L,R terminals can be modulated by
tuning the parameters of the G (gate) reservoir.

We consider two realizations of this standard setup. (i)
Artificial nanodevices operating as thermal amplifiers or
transistors [39]. Here the generic system includes three seg-
ments, source, drain, and gate, following the notation used in
semiconductor transistors. In such systems one would try to
manifest strong gated controllability of the current in the
source and drain terminals, while negligible current leaks to
the gate. This device may be realized by fabricating branched
nanotubes with T, Y, and X shapes [40,41]. (ii) Macromol-
ecules, e.g., proteins and dendriemds with spatially separated
side groups. Energy may be funneled between the molecular
groups by a control unit, for example a protein, that can
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FIG. 1. A schematic representation of the model studied in this
work, exemplified on a three-bath system. The molecular units (cen-
tral part) interacts with multiple thermal reservoirs maintained at
constant temperatures. Heat current is defined as positive when
flowing into the central molecular segment.

temporarily bind to the system. In such systems we are not
necessarily focused on minimizing the energy current from
the subsystem to the gating group.

The role of the gate (G) may be modeled as inducing
thermal fluctuations of the L-R transition element [42], thus
we refer to this mode of control as dynamical. The control
element can also be identified as the solvent itself, modulat-
ing system parameters. Inserting a molecule in different me-
diums may therefore modify its heat conduction properties.
In this context this work provides a simple framework for
investigating IVR in solutions [43].

The main question to be addressed in this paper is what is
the role of anharmonic interactions, specifically, nonbilinear
molecule-surface interactions, in controlling the thermal
properties of a gated system. It is widely accepted that non-
linear interactions are essential for showing normal (Fourier)
transport in molecular chains [25,44]. Anharmonic interac-
tions are also necessary for bringing in rectifying behavior
[28-35], and for manifesting nonlinear thermal conductance
characteristics [39,45]. We show next that anharmonic inter-
actions are also a crucial element for realizing dynamical
control of heat current.

We consider two models. The first system is a prototype
for transport in harmonic chains. The second model incorpo-
rates anharmonic interactions in the molecule, and also as-
sumes nonbilinear system-bath couplings. For both models
we focus on two quantities: (i) We calculate the heat current
at the terminal v, J, and (ii) we investigate the net heat
current flowing between two surfaces J,_, ,. The objective of
our calculation is to demonstrate that these quantities
strongly depend on the parameters of the gate reservoirs
(temperature and energetics) for the anharmonic model only.

We begin with the harmonic model. In this case both the
reservoirs (inverse temperatures ,8,,=T_Vl, v=1---N) and the
molecular unit are modeled by a set of noninteracting bosons
coupled via a bilinear term. For simplicity, we assume that
heat transfer in the molecular unit is dominated by a specific
single mode
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Here b' (b) are creation (annihilation) operators for the mo-
lecular mode of frequency wy. Similarly, aJT,,, (a;,) are the
operators for the mode j of the v reservoir. Since system-bath
interaction is bilinear, the model Hamiltonian can be exactly
diagonalized, to be represented in terms of a set of noninter-
acting phonons. We refer to model (1) as the boson-boson
(BB) Hamiltonian.

The dynamics of the subsystem can be exactly solved
using various techniques, e.g., the generalized Langevin
equation [38,44] and Master equation formalism [30,45,46].
The result of these calculations is the “thermal Landauer for-
mula” [37,38], where in the classical limit the heat current
(for N=2) linearly depends on the temperature difference
between the two thermal baths. We briefly follow here the
derivation within the Master equation formalism, generaliz-
ing the results of Refs. [30,45]. for an N-terminal system.

Under the assumption of weak system-bath interactions,
going into the Markovian limit, the probabilities P, to oc-
cupy the n state of the molecular oscillator satisfy the master
equation [45,46]

Pn = nkuPn—l(t) + (n + 1)den+1(t) - [nkd + (l’l + l)ku]Pn(t)
)

The nonadiabatic relaxation and excitation rates k; and k,,
respectively, are given by summing up contributions from
each reservoir, as no correlations exist between the different
baths (v=1---N),

ko= kL kg= 2 kL. (3)

It can be shown that

ky= I' (wo)[1 + 71, ()], k=T (wo)ir,(wy), (4)

where
[ (wp) =27, )\jz»’vé(wj - wp). (5)
J

Here 71,(w)=[e®Tv—1]"" is the Bose-Einstein distribution
function for the v reservoir. The heat current properties of
this model are obtained from the steady state solution of Eq.
(2) with the nonadiabatic rates (3) and (4). The steady state
heat flux at the v terminal is given by calculating the differ-
ence between heat flow from the v bath into the molecular
mode, leading to vibrational excitations within the molecule,
and the outgoing molecule-reservoir energy current, resulting
from relaxation processes inside the molecule

TP = w0 2 n(kiPy = kP, ). (6)
The current is defined positive when flowing from the con-

tact into the molecule. In the classical limit (7,> w,) we get
[45]
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r,2 TuT,~T,)
>,

JE = (7)

Considering this expression, we can identify the directed cur-
rent v— u as

r,r(r,-1
J(BB)_ v “( v “). (8)

v E,u 1_‘#

We refer next to two specific terminals as source (L) and
drain (R), while all other N—2 baths are referred to as gates
(G). When currents in the G terminals are zero J,.; =0, the
gates acquire the same temperature in the steady state T
=, T +gTg)/(I',+1T'g). The current at the L/R contact is
then given by

r,r
JE = LR (1 Ty, Jp=-Jp, 9
L T, + FR( L= Tr) R L )
which is the same result as obtained when I';=0, see Eq. (7).
We also find that the current J; _ p decays with the number of
thermal reservoirs as

r,T
JBB) = — LR,

L—)R_E 1_‘

v

~Tg) (]GZO) (10)

v

due to additional decay channels. To summarize, we find that
in the harmonic limit the effect of gate terminals is simply to
effectively increase the broadening I', while the gates’ tem-
peratures cannot modify the current in the system. Thus,
there is no control over the heat dissipated (or absorbed)
from the contacts in a purely harmonic system.

Next we show that in a model consisting nonlinear inter-
actions heat current can be strongly controlled by the tem-
perature of a gate terminal. As a case study we consider the
spin-boson (SB) model, generalized to include N bosonic
reservoirs (creation operators a; ,» v=1---N) linearly coupled
to a spin (two-level) system

H —
=—0,+
SB 7 X

wja;’yaj’,, E (a +a;

003
j.v
(11)

Here w is the energy difference between the spin levels with
tunneling splitting A. In this model internal molecular anhar-
monicity is introduced by truncating the spectrum of the
single molecular mode to include only the lowest two energy
states. We do not allow for other phonon-phonon scattering
processes, e.g., umklapp processes, that can lead to normal
conductivity as in the Peierls model [47]. Using the small
polaron transformation [48] it can be shown that this model
represents a molecular mode coupled nonbilinearly to the
harmonic reservoirs [30],
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Here Q=2,Q,, Q,=iZ; -’—(ajv a;,), Hpin=2; Vﬁ is an
energy shift henceforth 1ncorporated into the zero order en-
ergies. Equation (12) shows that the role of the thermal res-
ervoirs is to modulate the transition elements between mo-
lecular vibrational levels. The important feature of this
model is that system-bath couplings [Eq. (12)] are multipli-
cative in the bath degrees of freedom, rather than additive as
is the linear harmonic model (3). We do not distinguish in
this model between the role of the different reservoirs
(source, drain, and gates). One could construct variants of
this model, where the gates interact in a distinct functional
form. For small A the Hamiltonian leads again to nonadia-
batic dynamics, Eq. (2), with n=0, 1. The rate constants are
given by

A2 2
k”=ZC(_ wp), kd=ZC(w0)' (13)

Here

Clwy) = f i dte'™'C(t), C(t)=1I1,C,(1),

C(1) = ("m0 | (14)

The trace is performed over the v reservoir degrees of free-
dom. For convenience, in what follows we disregard the
prefactor (A/2)2. Using the convolution theorem, it can be
shown that the function C(w,) can be decomposed in terms
of the N reservoirs correlation functions

C(wo) = f dwlf d(l)z' : f dwN_l

X Ci(w)Cy(wy) - -+

=),

(15)

CN(wo — W]~ Wy~

where C,(w)=["_e"“'C,(t)dt is identified as the rate constant
affected from the v thermal bath. The heat flux at the v
terminal can be formally written for an N-terminal system by
considering combinations of all processes in which the res-
ervoirs exchange energy with the subsystem [30]

]SzSB) == f wdodw, - dw," - doy ., yCilwy)

X [CV(wV)CN(wO -—w
- C~0,)Cp\~ 0y~

‘= wy_1) P

w)Py].
(16)

_wz..._wy..
+wy”'_wN—l_

For clarity, we include the explicit expression for the heat
flux in a three-terminal junctions, measured at terminal “1”
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J(ISB)(N: 3) =- f (x)ldwlf d(,()z

X[Ci(w)) Co(@,) C5(wy — w) — wp) Py
— Ci(= 01) Cy() C53(= wy + 0y — w,) Py ].
(17)

The population of the spin levels is given by Py=1-P,
=C(wy)/[C(wy)+ C(-wy)]. Assuming strong coupling, going
into the high-temperature classical limit (7,> w,), the kernel
C,(t) [Eq. (14)] can be calculated in the short time limit [48]

C()=e 0, ¢ (1) =iElt+T,ELf, (18)

2

where E};=2 j% is the reorganization energy of the v reser-
. J .

voir. In frequency domain we find that

Clon) =\ 7o %}
ME=M L ME=M

(w—E}(,,)z}
ATEy |

(19)

where E,, is the total (N baths) reorganization energy and T,
is an effective temperature for the subsystem

> EyT,
Ty=—"". (20)

_ v
EM—EVE , i

Integrating Eq. (16) utilizing Eq. (19) yields the heat current
at the v contact (ignoring a multiplicative numeric factor of
4 )

EN(T,-T
J(SB)_ " 2# M( v //,)

-E (@0~ EM)2/4EMTM. 21
T 1 e 2y

The current flowing between the terminals v and u is given
by

Jon __ EuEL(T,=T,)

_ (@~ Ey)4EyTy (22
V= (EMTM)3/2(1 +ew0/TM) ( )

The temperatures of the gating terminals and their couplings
to the molecule appear in a nontrivial way in this expression,
leading to strong controllability, as opposed to the harmonic
results, Egs. (7) and (8).

We exemplify control over the heat current in the system
by studying a source-drain-gate setup, where two reservoirs
are considered as source (L) and drain (R), while N—2 baths
are identified as gates (G). Under the condition of zero cur-
rent in the gating terminals (J;=0), the gates temperatures
can be determined self consistently to yield T5=T),
=(E% T, +ENTg)/ (E5 +EY). The current at the source-drain
contact then becomes
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FIG. 2. Control over heat current in a three-terminal configura-
tion under the condition of zero current at the gate ](SB)—O The
heat current at the L contact (full) strongly decays Wlth EG Also
shown are the directed currents J R (dashed), JGSE)R (dashed-
dotted), and J(GSE)L (dotted). Other parameters are 7;=300 K,
Tp=200 K, T;=250 K, Ej,=EF =50 meV.

J(LSB) __ JgB)

E, (@~ Ep)I4Ey TG

(1 + e*'Tc)

EyEy
Eﬁ (EnTo)"

= (TL R)

(23)

When all gates evenly couple to the subsystem E} —E0 and
for Ey= NE > w,, we find that the current exponentlally
decays with N, corrected by a power law J(SB)

« ATN"2¢ NEM/4TG AT=T;-Tg. We can also calculate the
L— R current, again taking J;=0,

L R —(wy— Ep)*AEy,T,
E EM e 0 M MG

EnT)”  (xero) Y

T8 = (T, - Ty)

In the limit of strong coupling NE0 >w,, we find that
J L?;MATN‘3/2 ~NEy/4TG, Therefore, the temperature T
serves as an effective activation temperature, exponentially
enhancing the directed current, E,, is the energy gap for
transport. Note that J; /J; . g=E,,/ (E5+E},), in analogy with
the behavior of the fully harmonic model, Egs. (9) and (10).

We present next numerical results calculated by applying
Egs. (21) and (22) on a three-terminal (L, R, and G) configu-
ration. The control parameters are the coupling strength of
the gate to the subsystem, given in terms of reorganization
energy Ef\;l and the temperature of the G reservoir. For sim-
plicity we take A/2=1 meV.

Figure 2 displays results in the absence of (net) energy
flow between the gate and the subsystem. Taking all coupling
strengths to be equal sets the gate temperature to
To=(T;+Tg)/2. Simulating Eq. (23) we find that the current
at the L/R interfaces strongly decays with Efl We also show
strong control over the directed L— R current using Eq. (24).

Next we modulate the temperature of the gate reservoir,
and manifest that the system can act as a good thermal con-
ductor or an insulator, depending on the gate temperature.
Figure 3 shows that the system behaves as a bad thermal
conductor at low gating temperature 75~ 100 K, while at
T;=250 K (where J;=0) the current is amplified by a factor
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FIG. 3. Switching the heat current in a three-terminal setup: The
system behaves as an insulator for low control temperatures, while
for high T; the system becomes a good thermal conductor. JS®
(dashed) and —J(RSB) (full) are equal at T;=250 K, where JGB)
(dotted) diminishes. Other parameters are 7; =300 K, T3=200 K,
EY=ER =50 meV, E$ =300 meV.

of ~10. The system can thus act as a switch, with an off-
state at low gate temperatures and on-state at high 75 A
similar behavior was looked at in nonlinear molecular chains
using Langevin dynamics [39].

We can also expose the nonlinear controllability in this
model by studying the directed current J,_, , as a function of
the gate temperature. While the experimental observables are
in general the J, currents, it is still instructive to show the
directed components, manifesting nontrivial behavior.
Figure 4 shows that the J(Lsfae flux is strongly enhanced, by
two orders of magnitudes, when the gate terminal is strongly
coupled to the molecular mode (dashed-dotted line). In con-
trast, at weak coupling (full line), J(LSHBZe is insensitive to the
presence of the G channel. Since 7; and Ty are higher than
T, energy from both L,R reservoirs is transferred into the

el
R
T
s
: |
e 107} « -
: —"’%‘ 0.2 .
_I 3 K2 .
- ) i S "
. ¢ i
= N i
o\f 3 ""
R4 I '
P i
7 100 . 200 304
10 | ‘ : T Kl
50 100 150 _ 200 250 300
T [KI

FIG. 4. Control of heat current in a three-terminal configuration.
The current J(LSE';e can be strongly manipulated by the control bath at
strong coupling. 7;=350 K, T=300 K, ELMzEf,,:SO meV,
Eﬁ:lo meV (full), 100 (dashed), 200 (dotted), and 300 meV
(dashed-dotted). Inset: The energy flow into the gate strongly de-
pends on its temperature J(Lsf) (dashed-dotted) and J;SE)G (full),

e G
E;;=300 meV.
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gate. However, this process nonlinearly depends on the tem-
perature of the control unit (inset), in contrast to the har-
monic behavior J(LE?G:(TL—TG)FLFG/(FL+FR+FG), Eq. (8).

As discussed above, the model Hamiltonian (11) could
also be introduced for describing transport between two side-
groups in a macromolecule immersed in a solvent. In this
context, Fig. 4 reveals that changing the solvent temperature
may enhance the L to R current, in analogy with the effect of
solvent assisted IVR [43].

In conclusion, we have presented two models for the
study of thermal transport in gated systems: A purely har-
monic system and an anharmonic model. In both cases the
gate terminals induce thermal fluctuations of the transition
elements between the molecular vibrational states, leading to
dynamical control of heat current. We (trivially) found that
the purely harmonic setup cannot bring in a gated behavior.
In contrast, in the spin-boson model, incorporating anhar-
monic interactions, the system can behave either as an insu-
lator, or as a good thermal conductor, depending on the gates
parameters: temperatures and molecule-bath coupling
strength (binding energy using proteins terminology).

We may also explore other variants of the anharmonic
model. For example, the central molecular unit can bilinearly
and weakly couple to the L and R surfaces, while the gates
may couple nonbilinearly-strongly to the subsystem. Such
models should basically display the same characteristics as
discussed above.

The effects described in this paper may be also studied
using classical molecular dynamics (MD) simulations [39].
The advantage of our formalism over such Langevin equa-
tion treatment is twofold. (i) Nonbilinear system-surface
couplings are difficult to simulate within Langevin dynam-
ics, leading to a coordinate-dependent friction coefficient
[49]. (ii) The net heat current between two reservoirs J,_,,
cannot be resolved within MD simulations, only the current
at each terminal can be directly obtained. In contrast, one can
clearly identify these currents in the analytical expression
(22).

The models presented in this paper can be realized by
fabricating an N terminal nanodevice. The heat conductance
of suspended two-terminal nanotubes was measured by de-
tecting changes in the electric resistance of the attached
heater and detector pads [13]. We suggest employing this
method in a three-terminal setup, e.g., by connecting a
T-shaped nanotube to three conducting surfaces [40,41].
Macromolecules with spatially localized side-groups also of-
fer a playground for realizing these models [43,50].

Nonlinear electrical devices (rectifiers, switches and tran-
sistors) have shaped technology in the last 60 years. Nonlin-
ear nanomechanical devices promise to revolutionize the
technology of the future as well, whereas phonons, instead of
electrons become the carriers of information and the compu-
tation element. This paper, presenting a simple study for the
control of heat flow in nanosystems, is a first step in address-
ing this challenge. Introducing quantum effects will further
offer new pathways for energy control at the nanoscale
[51,52].
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